While binary heaps are the most common, other specialized heaps exist.

  • d-ary Heap

    A heap where each node has `d` children instead of 2. This creates a flatter tree, reducing its height, but increases the number of comparisons needed at each node during bubble down operations.

  • Fibonacci Heap

    A more complex structure using a collection of trees. It offers faster amortized times for operations like `decreaseKey`, making it highly efficient in advanced graph algorithms like Dijkstra's.

  • Binomial Heap

    A collection of special trees called "binomial trees." Its primary advantage is supporting the fast merging of two heaps, an operation that is slow for binary heaps.

Binary Heap